Catastrophic Inflation

Kuver Sinha

Mitchell Institute for Fundamental Physics Texas A M University

SUSY 2011

arXiv:1106.2266, work in progress Sean Downes, Bhaskar Dutta, KS

Why am I talking about inflation at SUSY 2011?

A matching of scales?

We don't know the scale of inflation and the scale of SUSY breaking

Large Hadron Collider

Planck

Inflation generates metric perturbations: Scalar and Tensor

The scale of inflation is related to the tensor to scalar ratio *r*through

$$V^{1/4} \sim \left(\frac{r}{0.07}\right)^{1/4} \times 10^{16} \text{ GeV}$$

Planck will get to r = 0.05. Gravity waves \Rightarrow inflation at the GUT scale

But what if not?

Inflationary sector has vacuum energy \Rightarrow SUSY broken \longrightarrow it is the SUSY breaking of the world

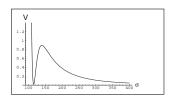
Dine Riotto hep-ph/9705386, Guth Randall hep-ph/9512439

The Kallosh-Linde problem in String Theory.

Comes from a simple fact at the heart of string theory

There are extra dimensions of space, and these dimensions are compact

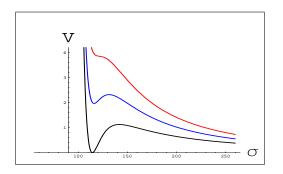
Kallosh, Linde 2004, 2007


Consider KKLT

$$K = -3 \ln \left(T + \overline{T}\right)$$

$$W = W_{\text{flux}} + A e^{-aT}$$

$$V = e^{K} (|DW|^{2} - 3W^{2}) + V_{lift}$$


$$m_{3/2}^2 = e^K W^2$$

Barrier height $\sim 3 m_{3/2}^2$

Consider an inflationary sector ϕ

$$V_{\text{total}} = V = e^{K} (|DW|^{2} - 3W^{2}) + V_{\text{lift}} + e^{K} (D_{\phi}W^{2})$$

 $\sim V = e^{K} (|DW|^{2} - 3W^{2}) + V_{\text{lift}} + \frac{C}{\sigma^{3}}$

Inflationary scale ~ SUSY breaking scale

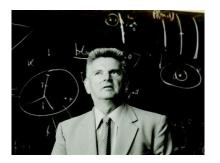
Presumably, we should be studying low-scale inflation

$$V^{1/4} \sim \left(\frac{r}{0.07}\right)^{1/4} \times 10^{16} \text{ GeV}$$
 $\left(\frac{r}{0.07}\right)^{1/2} \lesssim \frac{\Delta \phi}{M_{\rm pl}}$ (Lyth bound)

Small-field inflation models

- Natural in the context of low-scale inflation
- Effective action under control

We'll mainly talk about Inflection Point Inflation



4□ > 4□ > 4□ > 4□ > 4□ > 4□

Rest of talk:

Catastrophe theory: the mathematics of critical points of functions

Rene Thom

Inflection point inflation:

 Common structure: D-brane inflation, MSSM inflation, Kahler moduli inflation etc.

•
$$\epsilon$$
, η \ll 1 \Rightarrow $V'(\phi_0)$, $V''(\phi_0) \ll$ 1

 Relevant data: Inflaton fields × Space of physical control parameters

$$\Sigma \times C$$

Singularity theory: degenerate critical points

non-Morse (
$$\Sigma$$
): $V'(\phi_0) = V''(\phi_0) = 0$.

Thom Classification Theorem:

- Classification of all possible Σ × C
- For a given inflationary scenario, complete analytic control over control parameter space C

ADE classification of inflaton potentials

$$\Sigma \times C$$
 (Thom Classification Theorem)

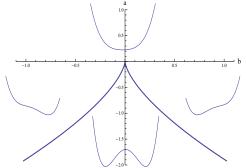
$$\begin{aligned} \mathsf{A}_{\pm k} : \ & (\pm)^k x^{k+1} + \Sigma_{m=1}^{k-1} a_m x^m \\ \mathsf{D}_{\pm k} : & (\pm)^k x y^2 \pm x^{2k-1} + \Sigma_{m=1}^{k-3} a_m x^m + c_1 y + c_2 y^2 \\ \mathsf{E}_{\pm 6} : & \pm (x^4 + y^3) + a x^2 y + b x^2 + c x y + d x + f y \\ \mathsf{E}_7 : & y^3 + y x^4 + \Sigma_{m=1}^4 a_m x^m + b y + c x y \\ \mathsf{E}_8 : & x^5 + y^3 + y \Sigma_{m=0}^3 a_m x^m + \Sigma_{m=1}^3 c_m x^m \end{aligned}$$

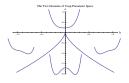
Information about control parameters space C

Consider A_k singularities

 Σ is one-dimensional (single-field inflation)

$$V'(x) = v(x) \prod_{i} (x - \beta_i)$$


$$\beta_1 = \ldots = \beta_m \ \Rightarrow \ (k - m)$$
 dimensional hypersurface in C .

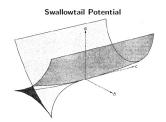

We will take m=2

A₃ domain structure

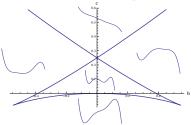
$$V(x) = x^4 + \frac{1}{2}ax^2 + bx$$

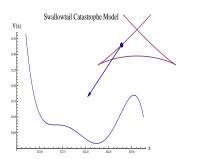
The Two Domains of Cusp Parameter Space

$$N = \left(\frac{\pi}{2}\right) \frac{1}{2\sqrt{\lambda_1(\beta - \alpha)}}$$
$$\Delta_{\mathcal{R}}^2 = V_0 \frac{N^4}{144\pi^2} (\beta - \alpha)^6$$


- Exactly on the cusp $N \to \infty$
- λ_1 parametrizes how far you go from the cusp
- Can get the probability of having N e-foldings (work in progress)

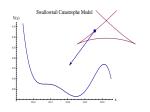
Existence properties:


- Inflation happens near domain walls in C
- How close you are depends on how much N you want
- Existence: if physical parameters do not exclude a domain wall, inflation is in principle possible irrespective of (perhaps uncontrolled) corrections

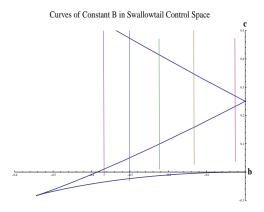

A₄ domain structure

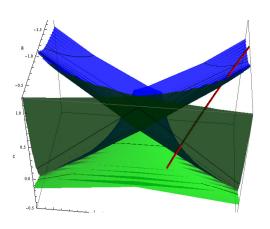
$$V(x) = x^5 + \frac{a}{3}x^3 + \frac{b}{2}x^2 + cx$$

$$V_{inf} \propto (\beta - \alpha)^4 (\gamma - \alpha)$$


$$V_{barrier} \propto (\gamma - \alpha)^4 (\beta - \alpha)$$

Separation of scales: forced into Large Volume Scenarios? Dissipation into background radiation?


Conlon, Kallosh, Linde, Quevedo 2008

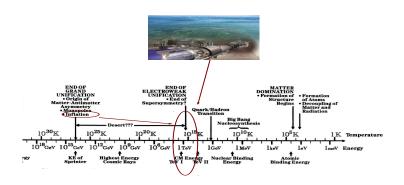

K = -3 ln (T +
$$\overline{T}$$
), $W = W_0 + Ae^{-aT} + Be^{-bT}$
 $V_{\text{uplift}} = C/(\text{Re}T)^2$

Control parameters
$$(W_0, A, B, C) \longrightarrow (1, \overline{A}, \overline{B}, \overline{C}) = (1, \frac{A}{W_0}, \frac{B}{W_0}, \frac{C}{W_0})$$

Three parameters and two minima \longrightarrow A_4 inflation $a \propto \overline{A}, b \propto (\overline{C} - \frac{\overline{B}}{\overline{A}})$ $c \propto (\overline{C} + \frac{\overline{B}}{\overline{A}})$

$$\Delta_R^2 \propto (\beta - \alpha)^6 (\gamma - \alpha)^3 \alpha^6, \quad \alpha \sim \log |\frac{A}{W_0}|$$

For $\Delta_R^2 \sim 10^{-10}$, $N \sim 50$, intermediate scale inflation, need $\alpha \sim \mathcal{O}(10^2-10^3)$. $W_0 \sim 10^{-14} \Rightarrow A \sim e^{\kappa}, \kappa \sim 100$


$$M_0 = \frac{8\pi |\Delta_{\mathcal{R}}| \alpha^3}{3N_{\varepsilon}^2 |(\beta - \alpha)(\gamma - \alpha)|(\beta - \kappa)}$$
$$\alpha_{\text{mir}} = \frac{\beta - \kappa}{32}$$

Allahverdi, Dutta, KS (arXiv:0912.2324)

A singularity theoretic approach to inflation

- Neat classification of inflation potentials and analytic control over parameter spaces
- Suited for embedding inflationary regions in a larger physical theory
- Stability and universality properties clearer

Applied A_4 singularities to study a complicated inflaton potential in string theory. Found the effect of low scale inflation on supersymmetry breaking in a toy racetrack model

Future directions:

- Explore D and E—type singularities, parameter space of multifield inflationary models
- For A—type singularities, probe connections between inflation and supersymmetry breaking in more detailed models